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Abstract

The Fourth IPCC Assessment Report concluded that ice-sheet flow models are unable
to forecast the current increase of polar ice sheet discharge and the associated contri-
bution to sea-level rise. Since then, the glaciological community has undertaken a huge
effort to develop and improve a new generation of ice-flow models, and as a result, a5

significant number of new ice-sheet models have emerged. Among them is the parallel
finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer.
It was one of the first full-Stokes models used to make projections for the evolution of
the whole Greenland ice sheet for the coming two centuries. Originally developed to
solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice10

has today reached the maturity to solve larger scale problems, earning the status of an
ice-sheet model. Here, we summarise almost 10 yr of development performed by dif-
ferent groups. We present the components already included in Elmer/Ice, its numerical
performance, selected applications, as well as developments planned for the future.

1 Introduction15

Since the 2007 IPCC report (Solomon et al., 2007), the glaciological community has
undertaken a huge effort to improve ice-sheet flow models, in order to provide reliable
future estimates of the dynamical contribution of ice-sheets to sea level rise. These
models were originally designed to reconstruct the evolution of ice-sheets over past
glaciological cycles, neglecting short term responses and local features. The new chal-20

lenge of running ice-sheet models to provide estimates of future sea-level rise has cre-
ated the need for a new generation of ice-sheet models (Vaughan and Arthern, 2007;
Gillet-Chaulet and Durand, 2010; Blatter et al., 2011; Kirchner et al., 2011; Alley and
Joughin, 2012). This new generation of ice-sheet models includes a set of requisites
that are essential to provide a sufficiently accurate description of the ice flow dynamics.25
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As a first requisite, these models must be able to describe the ice flow heterogeneity,
and particularly the major contribution of individual ice streams to the total ice dis-
charge. This requires the use of an unstructured mesh in the horizontal plane (e.g.
Gillet-Chaulet et al., 2012; Larour et al., 2012; Seddik et al., 2012) or of adaptive multi-
grid methods (Cornford et al., 2013b). These mesh techniques are essential to pro-5

duce hundred-meter scale grid sizes in areas of interest, especially near the coast,
while for the interior regions where variations in velocity gradients are small, classic
grid sizes can be kept to save computing resources. Grid refinement is even more es-
sential when considering the dynamics of the grounding line, i.e. the boundary between
the grounded ice sheet and the floating ice shelf, because a grid size that is too large10

gives inconsistent grounding line dynamics (Durand et al., 2009; Pattyn et al., 2013).
The second important requisite is to have an accurate description of the complex

state of stress prevailing in ice streams to solve the full-Stokes system, or at least
to adopt a higher order asymptotic formulation. As shown by the ISMIP-HOM inter-
comparison exercise (Pattyn et al., 2008), higher-order models are needed to describe15

the ice flow in areas where the basal topography and slipperiness vary greatly, which
are generally the most dynamic regions within ice sheets. Higher-order models are also
necessary to properly describe the dynamics of the grounding line. The MISMIP inter-
comparison (Pattyn et al., 2012) indicated the need to solve the full-Stokes equations
near the grounding line to obtain fully accurate results.20

The consequence of these first two requisites, i.e. high numerical resolution at places
of interest and higher order formulations, is a high computing cost and the necessity
to develop parallel codes, able to run over hundreds of CPUs. Recent studies (Larour
et al., 2012; Gillet-Chaulet et al., 2012; Seddik et al., 2012; Cornford et al., 2013b) have
fulfilled these requirements and have shown that by deploying high performance com-25

puting (HPC) techniques this challenge can be successfully taken on. In this context,
Elmer/Ice takes advantage of being backed by a large opens source community that
also develops new numerical and HPC techniques for the code (e.g. Malinen, 2007).
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The third requisite, and from the physical point of view the most challenging, is to
implement physically-founded boundary conditions. These improvements are far more
complex and it will take more time to fully address them in the ice-sheet flow models.
The recently observed changes in coastal glacier dynamics (e.g. Moon et al., 2012) are
certainly driven by changes in ice sheet and ice shelf boundary conditions, and con-5

sequently linked to changes in the ocean and atmosphere components of the climatic
system. In the simplest cases, changes in the climatic components directly drive the
changes at the boundaries of the ice mass. This is the case for surface air temperature
or ocean temperature which directly drive the temperature boundary condition of the
upper surface or the bottom ice/ocean interface, respectively. In other more complex10

cases, the link between changes in the ocean and/or atmosphere and changes in the
ice flow is indirect. Intermediate processes (often not observable) are involved, as in the
case for example of the link between surface runoff and basal sliding or ocean temper-
ature and calving rate. Thus, a dedicated model is required to describe the processes
responsible for the transfer of these changes to the ice mass. Driving this dedicated15

transfer model might require to couple the ice sheet model with an atmosphere or an
ocean model.

The last important requisite for a forecast model is to be able to simulate present
day observations with as much fidelity as possible (Aschwanden et al., 2012). This
point must be addressed clearly using data assimilation techniques and specific inverse20

methods to estimate the less well-known parameters of the model (e.g. Heimbach and
Bugnion, 2009; Arthern and Gudmundsson, 2010; Morlighem et al., 2010).

Recent ice-sheet model developments have started to fulfil some of these priority
requisites, leading the way toward the new generation of ice-sheet models (Bueler and
Brown, 2009; Pollard and DeConto, 2009; Rutt et al., 2009; Larour et al., 2012; Leng25

et al., 2012; Winkelmann et al., 2011; Favier et al., 2012; Gillet-Chaulet et al., 2012).
Among them, the Elmer/Ice model already includes many of these requisites. Elmer/Ice
is the glaciological extension of Elmer, the open source finite element (FE) software
developed by CSC in Finland (http://www.csc.fi/elmer/). Elmer is a multi-physics code
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base from which it was possible to develop new specialised modules for computational
glaciology while maintaining the compatibility with the main Elmer distribution. Thus,
Elmer/Ice still benefits from the developments of the standard Elmer distribution. In this
paper, for simplicity we refer to Elmer/Ice even if some of the features described belong
to the main Elmer distribution. Elmer/Ice was not originally designed as an ice-sheet5

model since the first applications were restricted to local areas of interest or glaciers.
Elmer/Ice was primarily developed to solve the flow of anisotropic polar ice and the evo-
lution of its strain-induced fabric (Gillet-Chaulet et al., 2006; Durand et al., 2007; Seddik
et al., 2008, 2011; Ma et al., 2010; Martín and Gudmundsson, 2012). It has since then
been used to model the flow of a cold firn-covered glacier using a dedicated snow/firn10

rheological law (Zwinger et al., 2007). Elmer/ice has been the only full-Stokes model to
perform the whole set of the ISMIP-HOM experiments (Gagliardini and Zwinger, 2008;
Pattyn et al., 2008) and is still the only full-Stokes model to participate in the grounding
line experiments MISMIP (Pattyn et al., 2012). Elmer/Ice was further used as a refer-
ence for the later MISMIP3d experiments (Pattyn et al., 2013). Recently, data assimila-15

tion was implemented within Elmer/Ice (Jay-Allemand et al., 2011; Schäfer et al., 2012;
Gillet-Chaulet et al., 2012) to infer poorly known parameters such as basal drag. Today,
Elmer/Ice is the only three-dimensional full-Stokes model that solves the grounding line
dynamics (Favier et al., 2012) and, it will be the only full-Stokes model able to run fore-
cast simulations for the whole Greenland ice sheet for the coming AR5 IPPC report, in20

the framework of both SeaRISE (Seddik et al., 2012) and ice2sea (Gillet-Chaulet et al.,
2012; Shannon et al., 2013; Edwards et al., 2013) programmes.

In this paper, we summarise ten years of consistent developments and present
the current state of the new generation ice-sheet model Elmer/Ice. We only focus
on the past developments that are relevant for simulations of three-dimensional ice25

sheets. Specific developments regarding two-dimensional flow line or glacier appli-
cations are not presented here, but one can consult previous publications on these
types of applications (the complete list of Elmer/Ice publications can be found on http:
//elmerice.elmerfem.org/). Section 2 presents the governing equations implemented in
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Elmer/Ice. The associated boundary conditions are discussed in Sect. 3. Other use-
ful equations, such as the ice age equation, are presented in Sect. 4. Section 5 is
dedicated to the inverse methods implemented in Elmer/Ice. Some technical aspects
related to the resolution of these equations in the framework of the FE method are
discussed in Sect. 6. The efficiency of Elmer/Ice was verified by classic convergence5

and scalability tests described in Sect. 7. Finally, we provide some insights in the future
planned developments in Sect. 8.

2 Governing equations

2.1 Ice flow equations

Ice is a fluid with an extremely high viscosity that flows very very slowly so that inertia10

and acceleration terms entering the momentum equation can be neglected. Therefore,
the three-dimensional velocity field and the pressure field of an ice mass flowing under
gravity are obtained by solving the Stokes equations over the ice volume Ω. The Stokes
equations express the conservation of linear momentum

divσ +ρg = divτ− grad p+ρg = 0, (1)15

and the mass conservation

divu = trε̇ = 0. (2)

In these equations, ρ is the ice density, g = (0,0,−g) the gravity vector, u = (u,v ,w) the
ice velocity vector, σ = τ−pI the Cauchy stress tensor with p = −trσ/3 the isotropic
pressure and τ the deviatoric stress tensor. This system of equations of unknowns u20

and p is closed by adopting one of the rheological laws presented in the next section.
The conditions that are applied on the boundary Γ of the volume Ω are discussed in
Sect. 3.
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2.2 Rheological laws for polar ice

Even if most ice-sheet models assume an isotropic rheological law for ice, it is well
known that the viscous response of polar ice can be strongly anisotropic, and that this
response depends on the crystal orientation distribution, i.e. the ice fabric. Elmer/Ice
includes the classic isotropic Glen’s flow law as well as two anisotropic flow laws.5

When ice is assumed to behave as an isotropic material, its rheology is given by
a Norton-Hoff power law, known as Glen’s law in glaciology, which links the deviatoric
stress τ with the strain-rate ε̇:

τ = 2ηε̇, (3)

where the effective viscosity η is defined as10

η =
1
2

(EA)−1/nε̇(1−n)/n
e . (4)

In Eq. (4), ε̇2
e = tr(ε̇2)/2 is the square of the second invariant of the strain-rate and

A = A(T ′) is a rheological parameter which depends on T ′, the ice temperature rela-
tive to the pressure melting point, via an Arrhenius law. The enhancement factor E in
Eq. (4) is often used to account for anisotropy effects, by prescribing an ad-hoc value15

depending on the ice age and/or type of flow. Due to the state of stress, E is expected
to be greater than 1 for grounded ice of polar ice-sheets, whereas a value lower than 1
should be used for floating ice-shelves (Ma et al., 2010). A compressible form of Glen’s
law (Gagliardini and Meyssonnier, 1997), well adapted to describe the flow of firn is
also implemented in Elmer/Ice (Zwinger et al., 2007).20

Both implemented anisotropic flow laws depend on the ice polycrystalline fabric,
which is described by its second and fourth order orientation tensors a(2) and a(4),
respectively, defined as
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a(2)
i j = 〈cicj 〉 and a(4)

i jkl = 〈cicjckcl 〉, (5)

where c is the crystal c-axis unit vector and 〈〉 denotes the average over all the grains
that compose the polycrystal. By definition odd order orientations tensors are null,
and the higher the order of the orientation tensor the better the description of the fab-
ric. However, it can be shown that with a linear flow law, knowing of the second and5

fourth order orientation tensors is sufficient to uniquely define the macroscopic flow
law (Gillet-Chaulet et al., 2005; Gagliardini et al., 2009). For random c-axes distribution
the non-zero entries of a(2) are a(2)

11 = a(2)
22 = a(2)

33 = 1/3, for a single maximum fabric with

its maximum in the third direction, a(2)
33 > 1/3 and a(2)

11 ≈ a(2)
22 < 1/3, and for a girdle type

fabric in the plane (x1,x2), a(2)
33 < 1/3 and a(2)

11 ≈ a(2)
11 > 1/3. In addition to three eigenval-10

ues, three Euler angles are necessary to uniquely define a(2) with respect to a general
reference frame. It can be shown analytically with a linear flow that if the second and
fourth order orientation tensors have the same eigenframe, the polycrystal behaviour
will exhibit orthotropic symmetries (Gillet-Chaulet et al., 2006). The equations for the
fabric evolution are presented in Sect. 2.5.15

The first anisotropic flow law implemented in Elmer/ice is the non-linear General Or-
thotropic Flow Law (GOLF, Gillet-Chaulet et al., 2005; Ma et al., 2010). The GOLF law
provides a non-collinear and non-linear relation between strain-rate and stress, using
the concept of structure tensors. In its initial form, the ice was assumed to behave as
a linearly viscous orthotropic material. In more recent works (Martín et al., 2009; Ma20

et al., 2010), the GOLF law has been extended to a non-linear form by adding an in-
variant in the anisotropic linear law. The simplest choice is either to add the second
invariant of the strain rate ε̇e (Martín et al., 2009) or the second invariant of the devi-
atoric stress τe (with τ2

e = tr(τ2)/2, Pettit et al., 2007; Ma et al., 2010). No theoretical
or experimental results are available today to discard one of these two solutions, and25

other solutions based on anisotropic invariants of the deviatoric stress and/or the strain
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rate are also possible. In Elmer/Ice, both solutions are implemented. Using the sec-
ond invariant of the deviatoric stress, for a given fabric and a given state of stress, the
corresponding strain rate relative to the isotropic response is the same for the linear
and non-linear cases. Using the strain-rate invariant in the same way as Martín et al.
(2009) leads to an opposite definition of the anisotropy ratios: for a given strain-rate,5

the corresponding stress relative to the isotropic response is the same for the linear
and non-linear cases. When using the stress second invariant, the GOLF law reads

2Aτn−1
e τ =

3∑
r=1

[
ηr tr(Mr · ε̇)MD

r +ηr+3(ε̇ ·Mr +Mr · ε̇)D
]

. (6)

The six dimensionless anisotropy viscosities ηr (a
(2)) and ηr+3(a(2)) (r = 1, 2, 3) are

functions of eigenvalues of the second order orientation tensor a(2), which represent10

a measure of the anisotropy strength. The three structure tensors Mr are given by
the dyadic products of the three eigenvectors of a(2), which then represent the ma-
terial symmetry axes. In the method proposed by Gillet-Chaulet et al. (2006), the six
dimensionless viscosities ηr (a

(2)) are tabulated as a function of the fabric strength (i.e.

the a(2)
i ) using a micro-macro model. Various micro-macro models, from the assump-15

tion of uniform stress within the ice polycrystal to the assumption of uniform strain-
rate, as well as different crystal anisotropy can be used to tabulate the six viscosities
ηr . The most realistic polycrystalline response is obtained using the visco-plastic self-
consistent model (VPSC, Castelnau et al., 1996, 1998), with the two crystal anisotropy
parameters chosen so that the experimentally observed polycrystal anisotropy is re-20

produced (Gillet-Chaulet et al., 2006; Ma et al., 2010). When the ice is isotropic, ηr = 0
and ηr+3 = 1 (r = 1, 2, 3), then the GOLF law 6 reduces to Glen’s isotropic flow law 3
with E = 1.

The second anisotropic flow law implemented in Elmer/Ice is the Continuum-
mechanical Anisotropic Flow model based on an anisotropic Flow Enhancement fac-25

tor (CAFFE, Seddik et al., 2008; Placidi et al., 2010). The CAFFE model assumes
1697

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/1689/2013/gmdd-6-1689-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/1689/2013/gmdd-6-1689-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 1689–1741, 2013

Elmer/Ice model

O. Gagliardini et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

collinearity between the strain rate and deviatoric stress tensors, so that the general
form of Glen’s law 3 is not modified, but the enhancement factor E is a function of the
polycrystalline deformability D such that:

E (D) =

{
(1−Emin)Dt +Emin 1 ≥ D ≥ 0 ,
4D2(Emax−1)+25−4Emax

21 5/2 ≥ D > 1 ,
(7)

with5

t =
8
21

(
Emax −1

1−Emin

)
, Emax ≈ 10 , Emin ≈ 0.1 . (8)

The polycrystalline deformability D is a function of strain-rate and fabric. When D = 0,
the minimal enhancement factor Emin is reached, which corresponds to an uni-axial
compression on a single maximum fabric. For an isotropic fabric, D = 1 and the re-
sponse is identical whatever the strain-rate, whereas the maximal enhancement Emax10

is obtained for D = 5/2 which corresponds to a single maximum fabric undergoing sim-
ple shearing. The adopted form for the polycrystalline deformability, which verifies the
above criteria, reads

D = 5

[(
ε̇ ·a(2) −a(4) : ε̇

)
: ε̇
]

ε̇2
e

. (9)

2.3 Evolution of the surface boundaries15

For transient simulations, the upper and lower boundaries of the domain are allowed to
evolve, following an advection equation. Evolution of the upper surface z = zs(x,y ,t) is
given by

∂zs

∂t
+us

∂zs

∂x
+ vs

∂zs

∂y
−ws = as, (10)
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where (us,vs,ws) are the surface velocities obtained from the Stokes solution and
as = as(x,y ,t) is the accumulation/ablation prescribed as a vertical component only.
Elmer/Ice provides a surface melting parameterisation based the positive degree-day
(PDD) method (Reeh, 1991), supplemented by the semi-analytical solution for the PDD
integral by Calov and Greve (2005) (Seddik et al., 2012). The accumulation/ablation5

distribution can also be inferred from a Regional Climate Model either directly as
in Gillet-Chaulet et al. (2012); Shannon et al. (2013) or using a surface elevation
parametrisation as in Edwards et al. (2013).

The lower surface of an ice-sheet is either in contact with the bedrock or the ocean.
The evolution of the lower surface z = zb(x,y ,t) is given as10

∂zb

∂t
+ub

∂zb

∂x
+ vb

∂zb

∂y
−wb = ab⊥

[
1+
(
∂zb

∂x

)2

+
(
∂zb

∂y

)2
]1/2

, (11)

where (ub,vb,wb) are the basal velocities and ab⊥ = ab⊥(x,y ,t) is the melting/accretion
function, taken perpendicular to the surface.

Assuming a rigid, impenetrable bedrock z = b(x,y), the following topological condi-
tions must be fulfilled by zs and zb:15

zs(x,y ,t) ≥ zb(x,y ,t) ≥ b(x,y) ∀x,y ,t. (12)

The weak formulation of Eq. (10) in combination with the constraints 12 forms a varia-
tional inequality. Technically, it is solved using a method of imposed Dirichlet conditions
that are released by a criterion based on the residual, as described in Sect. 6.5.

The margin boundary of an ice-sheet is either land- or marine-terminated, depend-20

ing on whether the bedrock elevation at the ice front is located above or below sea
level, respectively. In both cases, the front position evolves with time and its evolu-
tion is governed by the imbalance between ice flux and ablation/basal melting/calving
processes. Land-terminated fronts can be treated classically by adopting a minimal
ice thickness hmin, so that the exact condition 12 is replaced by the less strict one25

zs(x,y ,t) ≥ b(x,y)+hmin (and zb(x,y ,t) = b(x,y)).
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Where the ice-sheet is marine-terminated, this type of treatment cannot be applied
because the sea-water pressure and lateral buttressing forces would not be correctly
taken into account. The front boundary of a marine-terminated ice-sheet must therefore
be allowed to move over time, as a function of the calving rate and ice flux at the margin.

Assuming that the calving front is a vertical surface, it can be described by5

the implicit function Fc(x,y ,t) = 0 (Greve and Blatter, 2009). Denoting by grad Fc =
(∂Fc/∂x,∂Fc/∂y ,0) its gradient, Nc = | grad Fc| the norm and nc = grad Fc/Nc the unit
normal vector (assumed to point out of the ice), the calving front evolves as follows

∂Fc

∂t
+u

∂Fc

∂x
+ v

∂Fc

∂y
= Ncc⊥, (13)

where c⊥ is the calving rate. The latter is defined as the ice volume flux across the10

calving front, c⊥ = (u−w c) ·nc, where w c is the kinematic velocity of the calving front
(Greve and Blatter, 2009). Moving the mesh both vertically (upper and lower surface)
and horizontally (calving front) induces technical issues that are discussed in Sect. 6.1.

2.4 Heat equation

The temperature within the ice is obtained from the general balance equation of internal15

energy and reads

ρcv

(
∂T
∂t

+u · grad T
)
= div(κ grad T )+D : σ , (14)

where κ = κ(T ) and cv = cv(T ) are the heat conductivity and specific heat of ice, respec-
tively. The last term in the heat equation represents the amount of energy produced by
viscous deformation. The ice temperature T is bounded by the pressure melting point20

Tm, so that T ≤ Tm or equivalently T ′ ≤ 0, with T ′ = T − Tm being the homologous tem-
perature entering the Arrhenius law to estimate Glen’s parameter in Eqs. (4) and (6).
This inequality makes the solution of the heat transfer equation a non-linear problem
which is solved using an iterative method as presented in Sect. 6.5.
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2.5 Fabric description and evolution

Assuming that recrystallisation processes do not occur and that the ice fabric is induced
solely by deformation, the evolution of the second-order orientation tensor a(2) defined
by Eq. (5) can be written as

∂a(2)

∂t
+ grad a(2) ·u = W ·a(2) −a(2) ·W− ι(C ·a(2) +a(2) ·C−2a(4) : C), (15)5

where W is the spin tensor defined as the antisymmetric part of the velocity gradient.
The tensor C is defined as

C = (1−α)ε̇+αksAτ
n−1
e τ. (16)

The interaction parameter α controls the relative weighting of the strain rate ε̇ and
the deviatoric stress τ in the fabric evolution Eq. (15). When α = 0, the fabric evolution10

is solely controlled by the state of strain rate, whereas in the case where α = 1 the
fabric evolves under the influence of the deviatoric stress solely. In between, as for
the VPSC, both the strain rate and deviatoric stress contribute to the fabric evolution.
Assuming ι = 1, an interaction parameter α = 0.06 is in accordance with the crystal
anisotropy and the VPSC model used to derive the polycrystalline behaviour (Gillet-15

Chaulet et al., 2006). Seddik et al. (2008, 2011) adopted instead α = 0 and a value of
ι lower than 1. In Eq. (15), the fourth-order orientation tensor is evaluated assuming
a closure approximation giving a(4) as a tensorial function of a(2) (Chung and Kwon,
2002; Gillet-Chaulet et al., 2006). Theoretically, recrystallisation processes, such as
continuous and migration recrystallisation, can be included by adding terms in Eq. (15)20

to parameterise on the polycrystalline scale the phenomena occurring at the grain
scale (Seddik et al., 2011). Because experimental data are currently missing, these
parameterisations have not yet been validated and are not presented here.
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3 Boundary conditions

For all the equations presented above, classic Dirichlet, Neumann, Robin, symmetric
and periodic boundary conditions can be applied on the boundary of the domain. In
this section, we present the conditions to be applied on the different boundaries of an
ice-sheet for the main equations presented above, and we focus more specifically on5

the treatment of the basal boundary.

3.1 Ice/atmosphere boundary

The upper free surface z = zs(x,y ,t), also denoted Γs, is in contact with the atmosphere
and is therefore a stress-free surface, so that

σns = −patmns ≈ 0 for z = zs, (17)10

where ns is the normal outward pointing unit vector to the free surface. For the dating
equation, fabric equations and all other transport equations, Dirichlet conditions are
applied on the upper surface only where the ice velocity enters the domain (mainly in
the accumulation area). Where z = zs and u ·ns ≤ 0, the temperature is equal to the
imposed surface temperature, T (x,y ,zs,t) = Ts(x,y ,t), and the fabric is assumed to be15

isotropic, a(2)(x,y ,zs,t) = I/3. For the heat equation, a heat flux can be imposed at the
upper surface to account for melt-water refreezing.

3.2 Ice/bedrock boundary

The lower interface z = zb(x,y ,t), also denoted Γb, may be in contact with either the
sea or the bedrock, so two kinds of boundary conditions coexist on a single surface.20

The conditions to be applied where the ice is in contact with the sea are presented in
the next section. Where the ice is in contact with the bedrock (i.e. zb = b), the following
conditions apply:
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u ·nb +ab⊥ = 0, (18)

σnti
= ff (u,N)uti

, i = 1,2, (19)

where σnti
= ti ·σnb and uti

= u · ti (i = 1,2) are the basal shear stresses and basal
velocities, respectively, defined in terms of tangent vectors ti and normal outward-5

pointing unit vector to the bedrock nb. Note that the boundary condition Eq. (18) for
the Stokes problem is equivalent to the free surface Eq. (11). The effective pressure
N is defined as the difference between the ice normal stress and the water pressure,
such as N = −σnn−pw with σnn = nb ·σnb. Equation (18) is the no-penetration condition
accounting for basal melting (ab⊥ < 0) or basal accretion (a⊥b > 0), whereas Eq. (19)10

stands for the general form of a friction law. When ff = 0, the ice slides perfectly over
the bedrock, whereas when ff → +∞ basal sliding is null. The three different friction
laws implemented in Elmer/Ice are presented below.

The first friction law linearly relates the basal shear stress to the basal velocity, such
as:15

σnti
+βuti

= 0, i = 1,2, (20)

where β ≥ 0 is the basal friction parameter. As shown later, this simple law is used for
data assimilation and in this case β is a control parameter.

The second law implemented in Elmer/Ice is a Weertman-type sliding law:

σnti
+βmu

m−1
b uti

= 0, i = 1,2, (21)20

where ub is the norm of the sliding velocity ub = u−(u ·nb)nb, βm is a sliding parameter
and m an exponent. When m = 1, the Weertman-type friction law Eq. (21) reduces to
the linear law Eq. (20). Theoretically, in the case of ice sliding without cavitation over
an undulating bed, m is equal 1/n (Lliboutry, 1968), where n is Glen’s law exponent.
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The third friction was proposed by Schoof (2005) from mathematical expansions and
by Gagliardini et al. (2007) from FE simulations. This law describes the flow of clean
ice over a rigid bedrock when cavitation is likely to occur:

σnti

CN
+

(
χ u1−n

b

1+αq(χ ub)q

)1/n

uti
= 0 i = 1,2, (22)

where χ = 1/(CnNnAs), αq = (q−1)q−1/qq, As is the sliding parameter in the absence5

of cavitation and n Glen’s law exponent, resulting in a non-linear relation between the
basal drag σnti

and the basal sliding velocity uti
. The maximal value of σnti

is C and
the exponent q ≥ 1 controls the post-peak decrease. When the post-peak exponent q
is equal to 1, the basal drag tends asymptotically to its maximum value C (no post-
peak decrease). Note that in the limit case where N � 0, the sliding parameter As and10

the friction parameter βm are inversely proportional. As shown by Schoof (2005), the
coefficient C should be chosen smaller than the maximum local positive slope of the
bedrock topography at a decimetre to metre scale, so that the ratio σnti

/N ≤ C fulfills
Iken’s bound (Iken, 1981). The friction law Eq. (22) is strongly related to the water pres-
sure pw through the effective pressure N. We are currently developing a hydrological15

module that will allow to compute the basal water pressure. The law Eq. (22) can then
be used to couple the hydrology and the ice dynamics. The hydrological model and its
implementation in Elmer/Ice are presented in de Fleurian et al. (2013).

For the heat equation, the geothermal heat flux qgeo is imposed where the basal tem-
perature is lower than the pressure melting point (T < Tm or T ′ < 0), and the following20

Neumann-type boundary condition applies:

κ(T ) ( grad T ·nb) |Γb
= qgeo + |σnti

uti
|, (23)
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where |σnti
uti

| is the heat energy induced by basal friction. Where the temperature
melting point is reached (T = Tm), the amount of melted water is estimated from the
imbalance of heat fluxes and surface production:

ab =
qgeo + |σnti

uti
| − κ grad T ·nb

ρL
, (24)

where L is the latent heat of ice.5

3.3 Ice/sea boundary

At the bottom surface z = zb(x,y ,t) where the ice is in contact with the ocean (i.e.
zb > b) and at the front of the ice-sheet, the normal stress is equal to the sea pressure
pw(z,t), that evolves vertically as follows:

pw(z,t) =

{
ρwg(lw(t)− z), z < lw(t)
0, z ≥ lw(t)

(25)10

where ρw is the sea water density and lw the sea level. The Neumann condition applied
on these ice/ocean interfaces is thus:

σnc = −pwnc. (26)

3.4 Grounding line dynamics

The position of the grounding line is part of the solution and can evolve with time. Its15

position at each time step is determined by solving a contact problem. The contact is
tested by comparing at each node where zb = b the normal force Rn exerted by the
ice on the bedrock and the equivalent water force Fw. Rn is directly evaluated from
the residual of the Stokes system, whereas Fw is obtained by integrating the water
pressure over the boundary elements using the boundary element shape functions.20

Then, if Rn > Fw and zb = b, the boundary conditions Eqs. (18) and (19) apply; whereas
if Rn = Fw and zb = b; or zb > b, the boundary condition Eq. (26) applies instead.
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4 Auxilliary equations

The goal of an ice sheet simulation, usually, is to obtain information on either the geom-
etry, the age/depth relationship or simply the exerted stresses and forces on a particular
surface in contact with the ice. This section introduces the methods needed to obtain
such information.5

4.1 Age equation

The age A of the ice at each point of the ice-sheet domain is obtained by solving the
following equation

∂A
∂t

+u · grad A = 1, (27)

where z = zs and u ·ns ≤ 0, the age of the ice is zero, i.e. A(x,y ,zs,t) = 0 (Zwinger and10

Moore, 2009). By solving the age equation we can compute isochrones and determine
dating as a function of depth at an ice-core (drilled or planned) location. Input parame-
ters entering other equations might also be age-dependent, such as the enhancement
factor for example.

4.2 Depth and elevation15

It is often very useful to know the depth below the upper surface or the height above
the bedrock at each point of the ice-sheet domain. For example, it can be used to
prescribe parameterisation of the temperature or the ice fabric fields as a function of
depth. With the FE method, using unstructured meshes, the depth d (x,y ,z,t) = zs − z
or the height h(x,y ,z,t) = z− zb at any point M(x,y ,z) cannot be estimated directly20

because nodes are not necessarily vertically aligned. Therefore, we compute the depth
d (or equivalently height h) field by solving the following equations

∂d
∂z

= −1 , or
∂h
∂z

= 1, (28)
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with the boundary conditions d = 0 on z = zs or h = 0 on z = zb.
Effectively, we solve, here for the height h, the following system

−ez · ∇ (ez · ∇h) = 0, (29)

ez · ∇h|∂Ω = 1, (30)
5

with the boundary condition h|Γb
= 0 and ez the unity vector in the vertical direction.

The variational form is obtained after integrating Eq. (29) by parts and accounting for
the boundary condition Eq. (30), leading to a degenerated Laplace equation of the form

−
∫
Ω

∇ (ez · ∇h) ·ϕezdΩ=
∫
Ω

(ez · ∇h)∇ϕ ·ezdΩ−
∮
∂Ω

ϕez ·ndΓ. (31)10

4.3 Stress and strain-rate

Elmer/Ice includes solvers to compute the Cauchy stress, deviatoric stress or strain-
rate fields from the Stokes solution, and also includes eigenvalues of these tensor
variables. In addition, calculating of the stress from the velocity and isotropic pressure
fields is a matter of interest because different methods can lead to noticeably different15

solutions. In Elmer/ice, the components σi j of the nodal Cauchy stress field are ob-
tained from an existing Stokes solution (u,p) by writing the variational version of the
constitutive law in a componentwise manner as∫
Ω

σi jΦdΩ=
∫
Ω

ei ·σejΦdΩ=
∫
Ω

ei ·
(
η
(

grad u+ grad Tu
)
−pI
)
ejΦdΩ. (32)

This results in solving six independent equations, one for each of the six independent20

components of the stress tensor. In a similar manner, components ε̇i j of the nodal
strain-rate tensor are obtained from the following variational form∫
Ω

ε̇i jΦdΩ=
∫
Ω

ei ·
(

grad u+ grad Tu
)
ejΦdΩ. (33)
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5 Inverse methods within Elmer/Ice

The ice effective viscosity η(x,y ,z) in Eq. (3) and the basal friction coefficient β(x,y)
in Eq. (20) are two particularly important input fields when modelling the flow of real
glaciological systems. However, these two parameters are used to represent complex
processes and their values in-situ are poorly constrained and can vary by several or-5

ders of magnitude with time and space. On the other hand, our knowledge of some
of the outputs of the model (surface velocity, surface elevations) has considerably in-
creased recently with data acquired by remote spatial observation.

Two variational inverse methods have been implemented within Elmer/Ice to con-
strain η(x,y ,z) and β(x,y) in diagnostic simulations from topography and surface hor-10

izontal velocity data. Both methods are based on minimising a cost function that mea-
sures the mismatch between the model and the observations. The two methods are
briefly described below and their implementation in Elmer/Ice is verified in Sect. 7.

5.1 Robin inverse method

This method, initially proposed by Arthern and Gudmundsson (2010), consists in solv-15

ing alternatively the natural Neumann-type problem, defined by Eqs. (1) and (2) and the
surface boundary conditions (17), and the associated Dirichlet-type problem, defined
by the same equations except that the Neumann upper-surface condition Eq. (17) is
replaced by a Dirichlet condition where observed surface horizontal velocities are im-
posed, such that:20

u = uobs and v = vobs for z = zs. (34)

The cost function that expresses the mismatch between the solutions of the two
models is given by:

Jo =
∫
zs

(uN −uD) · (σN −σD) ·ndΓ, (35)
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where superscripts N and D refer to the Neumann and Dirichlet problem solutions,
respectively.

The Gâteaux derivatives of the cost function Jo with respect to the parameters η and
β for perturbations η′ and β′, respectively, are given by:

dηJo =
∫
Ω

4η′
(

(ε̇D
e )2 − (ε̇N

e )2
)

dΩ, (36)5

dβJo =
∫
zb

β′
(
|uD|2 − |uN|2

)
dΓ, (37)

where the symbol ε̇2
e denotes the square of the second invariant of the strain-rate

as defined for Eq. (4) and | · | defines the norm of the velocity vector. Note that this
derivative is exact only for a linear rheology and thus is only an approximation of the10

true derivative of the cost function when using Glen’s flow law Eq. (3) with n > 1 in
Eq. (4).

5.2 Control Inverse method

For a linear isotropic rheology (a scalar η independent of the velocity, i.e. n = 1 in Eq. 4),
the Stokes system of equations is self-adjoint. Denoting by λ and q the adjoint variables15

corresponding to u and p, respectively, they are solutions of the following equations:

2divηε̇λ − grad q = 0, (38)

trε̇λ = 0, (39)

where ε̇λ is the equivalent of the strain-rate tensor constructed with λ. For a non-linear20

rheology, the operator used by the forward solver (Stokes operator) remains self-adjoint
when equipped with the Newton linearisation (Petra et al., 2012).
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The cost function is chosen to measure the mismatch between the modelled and
observed surface velocities

Jo =
∫
Γs

j (u−uobs)dΓ, (40)

where j is the mismatch measure function and u
obs are the observed surface velocities.

The choice of j can be case dependent and will affect the boundary condition terms of5

the adjoint system. For example, as the surface velocity direction is mainly governed
by topography, we can discard the error on the velocity direction and express j as

j (u−uobs) =
1
2

(
|uH| − |uobs

H |
)2

(41)

where subscript H refers to the horizontal component of the velocity vectors (Gillet-
Chaulet et al., 2012). The Gâteaux derivatives of Eq. (40) with respect to η and β are10

obtained as follows:

dηJo =
∫
Ω

−2η′
(
ε̇λ : ε̇

)
dΩ, (42)

dβJo =
∫
Γb

−β′u ·λdΓ. (43)

5.3 Regularisation15

When working with non-perfect (noisy) data, it is necessary to add a regularisation term
in the cost function to improve the conditioning of the inverse problem and ensure the
existence of a unique minimum. The regularisation term is based on a-priori informa-
tion on the solution either from measurements, or from analytical solutions (Raymond
Pralong and Gudmundsson, 2011) or from assumptions on the spatial variations of20
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the variable. In Elmer/Ice, a smoothness constraint on a variable α can be imposed in
the form of a Tikhonov regularisation penalising the first spatial derivatives of α as in
Morlighem et al. (2010), Jay-Allemand et al. (2011),Gillet-Chaulet et al. (2012):

Jreg =
1
2

∫
Γb

((
∂α
∂x

)2

+
(
∂α
∂y

)2

+
(
∂α
∂z

)2
)

dΓ. (44)

The Gâteaux derivative of Jreg with respect to α for a perturbation α′ is obtained by5

dαJreg =
∫
Γb

((
∂α
∂x

)(
∂α′

∂x

)
+
(
∂α
∂y

)(
∂α′

∂y

)
+
(
∂α
∂z

)(
∂α′

∂z

))
dΓ. (45)

The total cost function to minimise then reads

Jtot = Jo + λJreg, (46)

where λ is a positive ad-hoc parameter. The cost function minimum is therefore no
longer the best with to observations, but a compromise (through the tuning of λ) be-10

tween fitting with observations and smoothness in α.

5.4 Minimisation

The Gâteaux derivatives of Jo are given by a continuous scalar product represented
by the integral terms in Eqs. (37) and (42). When discretized on the FE mesh, these
equations are transformed into a discrete Euclidean product as follows15

dγJo =
∫
∇γJoγ

′ ≈
Np∑
i=1

Wi∇i
γJoγ

′
i , (47)

where γ represents η or β, ∇γJo is the continuous Fréchet derivative of Jo, the expres-

sion of which is given by comparison with Eqs. (37) and (42), ∇i
γJo is its value at mesh
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node i = (1, . . . ,Np) and Wi is the nodal weight associated with node i and computed
following the standard integration scheme. The sum of all weights is the volume (or
area) of the FE mesh. The discrete gradients of Jo at each mesh node used for the
minimisation are then given by Wi∇

i
γJo and account for the volume or area surrounding

each node.5

The minimisation of the cost function Jo with respect to ηi or βi is done using the
limited memory quasi-Newton routine M1QN3 (Gilbert and Lemaréchal, 1989) imple-
mented in Elmer/Ice in reverse communication mode. This method uses an approxima-
tion of the second derivatives of the cost function and is therefore more efficient than
a fixed-step gradient descent.10

How we define the inner product used to compute the Gâteaux derivatives affects the
definition of the Fréchet derivatives, and could affect the convergence of the minimisa-
tion but does not affect the minimum we are seeking to achieve. As for glaciological
applications, velocities and strain-rates can vary by several orders of magnitude inside
the domain, and we have observed that including the nodal weights in the definition of15

the Fréchet derivatives leads to good convergence properties when using an unstruc-
tured mesh where large elements correspond to low velocity areas, and vice versa.
Possible alternatives are, for the control inverse method (Morlighem et al., 2010), to
use a cost function that measures the logarithm of the misfit or, for the Robin inverse
method (Arthern and Gudmundsson, 2010), to use a spatially varying step size rather20

than a fixed step in the gradient descent algorithm, as proposed in Schäfer et al. (2012).

6 Numerical implementation and specificities

6.1 Mesh and deforming geometry

Ice-sheets and ice-caps have a very small aspect ratio, horizontal dimensions be-
ing much larger than the vertical dimensions, and therefore meshing requires special25

care. The strategy commonly adopted in Elmer/Ice for meshing glaciers, ice-sheets
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and ice-caps is to mesh first the horizontal 2-D-footprint and then extrude it vertically.
These meshes are then vertically structured with the same number of layers over the
whole domain, whereas the horizontal dimension can be meshed using an unstructured
mesh. This is one of the main advantage of a FE ice flow model in comparison to the
classically used finite difference or volume methods for which the grid has the same5

size over all the domain, unless a mesh adaptive method is implemented (Cornford
et al., 2013a).

The unstructured mesh of the footprint can be created using triangle-shaped ele-
ments of various sizes to account for the spatial heterogeneity of the variables gradient.
The horizontal size of the elements can be controlled using, for example, a metric con-10

structed from the Hessian matrix of observed surface speed. Technically, optimising
the mesh sizes according to this metric is done using the freely available anisotropic
mesh adaptation software YAMS (Frey and Alauzet, 2005). Because of the overall size
of ice sheets, the mesh is then partitioned and all partitions are solved in parallel us-
ing the Message Passing Interface (MPI). In Elmer/Ice, the mesh can be generated15

either by extrusion as a preprocessing step, or by a built-in mesh extrusion feature
which operates on the parallel level. This internal procedure efficiently removes some
of the possible bottlenecks in preprocessing as the maximum mesh size is no longer
constrained by serial operations. Also, in the case of an extruded mesh, certain opera-
tions become trivial as for example modifying the geometry or computing the depth or20

elevation which efficiently becomes a one-dimensional problem.
The common approach to deform geometries in Elmer/Ice, if dealing with unstruc-

tured meshes, is to rearrange the nodes by solving a pseudo linear elasticity prob-
lem. Any mesh displacement, ∆x, in Elmer is relative to the initial mesh position,
x0, i.e. x(t) = x0 +∆x(t). A deformation of the surface, for instance, can be induced25

by a changing free surface, h. Hence, the prescribed vertical deformation here is
∆x(t) ·ez = h(t)−h(t = 0). Inside the bulk-mesh, the corresponding deformation is then
obtained by solving
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−∇ ·
(

2Y κ
(1− κ)(1−2κ)

ε+ λ
Y

2(1+ κ)
∇ ·∆x1

)
= 0, (48)

where Y and κ are respectively a pseudo Young’s modulus and Poisson ratio, describ-
ing the resistance against the deformation and its directional ratio. Further, 1 describes
the unit tensor and ε the symmetric strain tensor

ε =
1
2

(
∇∆x+ (∇∆x)T

)
. (49)5

In consequence, the induced mesh velocity from the re-computation of ∆x by
Eq. (48) from one discrete time-level t to t+∆t then is given by

um =
∆x(t+∆t)−∆x(t)

∆t
. (50)

The continuum equations, as presented above, strictly, are valid only in a fixed refer-
ence frame. In ice sheets or glaciers, however, the geometry by nature is not fixed. In10

a fixed reference frame, if u is the fluid velocity, the total change of a scalar property,
Ψ,

dΨ
dt

=
∂Ψ
∂t

+u · grad Ψ, (51)

consists of the local change and of a convective part u · grad Ψ.
For instance, if we solve Eq. (14), we should take any induced mesh velocity Eq. (50)15

into account. This is done by the Arbitrary Lagrangian-Eulerian (ALE) formulation, that
is based on the Reynolds’ transport theorem (e.g. Greve and Blatter, 2009). Conser-
vation simply demands that in the general reference frame of a moving mesh, Eq. (51)
changes into

dΨ
dt

=
∂Ψ
∂t

+ (u−um) · grad Ψ. (52)20
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A slight deviation from this is for the kinematic boundary condition Eq. (10), as the
convection term is only in the horizontal plane, i.e.

∂zs

∂t
+ (us −um)

∂zs

∂x
+ (vs − vm)

∂zs

∂y
−ws = as. (53)

The same is applied to Eq. (11) for the evolution of zb. A special case of Eq. (52)
is when the surface is considered to move horizontally (it does vertically by definition)5

at the speed of the fluid particles, i.e. um = us. This, for instance, is needed if dealing
with advancing fronts in marine terminated glaciers. In this case, the new position of
the surface is determined by x(t+∆t) = x(t)+u(t)∆t. In terms of the absolute mesh
update ∆x, this means that ∆x(t+∆t) = ∆x(t)+u(t)∆t, which simply reflects Eq. (50)
under um = us.10

6.2 Variational formulations

6.2.1 Stokes equations

The discrete variational form of the Stokes system Eqs. (1) and (2) is obtained by
integration over the ice domain Ω using the vector-valued weight function Φ and the
scalar weight function Ψ,15 ∫
Ω

ΨdivudΩ= 0, (54)

∫
Ω

τ : grad ΦdΩ−
∫
Ω

pdivΦdΩ−
∮
∂Ω

n ·σΦdΓ = ρ
∫
Ω

g ·ΦdΩ. (55)

In the relation given above, the left-hand side term in the momentum equation given
in Eq. (1) has been integrated by parts. One part is re-formulated by applying Green’s20

theorem, transforming it from an integral over the domain Ω into one over the closed
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boundary of the domain Γ, for which von Neumann or Newton boundary conditions can
be set (e.g. vanishing deviatoric surface stress components). The numerical solution of
Eq. (54) is obtained by either using the stabilised method from Franca and Frey (1992)
or the residual free bubbles method in Baiocchi et al. (1993).

For non-linear rheology, e.g. n = 3 in Glen’s law Eq. (4), Eq. (54) is non linear and5

needs to be solved iteratively. For the p+1 iteration of the non linear loop, the effective
viscosity ηp+1 is estimated from Eq. (4) using the previously computed velocity field up
(fixed point method or Picard method) or a Newton linearisation such as:

ηp+1 = ηp + (up+1 −up) ·
∂η
∂u

. (56)

Convergence is obtained much faster with the Newton iteration than with the Picard10

method but the former algorithm is known to diverge when starting too far from the
solution. In practice, the solution is reached first by performing some Picard iterations,
and then activating the Newton linearisation for the last iterations. Because the conver-
gence is problem dependent and depends on the initial solution, there is no general
rule stating when to start the Newton iteration scheme. The efficiency of the Newton15

method is illustrated on a test case in Sect. 7.2.

6.2.2 Transport equations

Assuming A = (A) or A = (a(2)
11 ,a(2)

22 ,a(2)
12 ,a(2)

23 ,a(2)
13 ), equations for the age of ice Eq. (27)

or ice the fabric evolution Eq. (15) can be expressed using the generic form:

∂Ai

∂t
+div(Aiu)+KiAi = Fi , (57)20

where i = 1, K = 0 and F = 1 for the dating equation and where i = 1, . . . ,5, and K

and F are vector functions of C, W, a(2) and a(4) for the fabric evolution equations. For
incompressible fluids (ice), div(Aiu) simplifies to u · grad (Ai ). Equation (57) is a first
order hyperbolic equation, and is non-linear when solving for the fabric evolution.
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The variational formulation of the transport equations is obtained by multiplying
Eq. (57) by the test function Φ and integrating over the ice volume Ω. Because in
the case of a vector solution A, the set of equations is solved iteratively for each com-
ponent independently, the variational formulation is presented for a scalar A, and reads

5 ∫
Ω

∂A
∂t

ΦdΩ+
∫
Ω

div(Au)ΦdΩ+
∫
Ω

KAΦdΩ=
∫
Ω

FΦdΩ. (58)

The second term is then integrated by parts, so that∫
Ω

∂A
∂t

ΦdΩ−
∫
Ω

A
∂Φ
∂xk

ukdΩ+
∫
Ω

KAΦdΩ=
∫
Ω

FΦdΩ−
∮
∂Ω

Au ·nΦdΓ. (59)

Dirichlet conditions have to be applied on all the boundaries of Ω where the flow
velocity is directed inside the ice domain. Because of the missing diffusion terms in10

Eq. (59), the classic Galerkin method is unstable. This transport equation is either
solved using the discontinuous Galerkin method proposed by Brezzi et al. (2004) or
a semi-Lagrangian method (Staniforth and Côté, 1991; Martín et al., 2009).

6.3 Preconditioned linear solvers

The discretisation and linearisation of the varying viscosity Stokes system lead to lin-15

ear systems which cannot be solved efficiently by using standard linear solvers. A spe-
cial preconditioned version of the Generalised Conjugate Residual (GCR) method has
therefore been implemented recently into Elmer/Ice to obtain effective parallel solu-
tions of these systems. This new preconditioner utilises the natural block structure of
the associated linear algebra problem and is derived from approximating the associated20

pressure Schur complement matrix S as S ≈ (1/η)M where η denotes the viscosity cor-
responding to the current non-linear iterate and M is the mass matrix corresponding to
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the pressure approximation (for similar solvers for varying viscosity flows see Grinevich
and Olshanskii, 2009; Burstedde et al., 2009; Geenen et al., 2009; ur Rehman et al.,
2011). Results of scalability tests done with this block preconditioned solver are pre-
sented in Sect. 7.3. Note that in conjunction with this Stokes solver version, we employ
a bubble stabilisation strategy based on utilising bubble basis functions corresponding5

to the high-order version of the finite element method.

6.4 Normal consistency

All boundary conditions involving vector (velocities) or tensor values (stress) are in
need of a consistent description of the surface normals. Nodal normals, by nature of
the discretisation applied in the FE method, are not uniquely defined, especially with10

linear elements. Thus, the representation of surfaces has non-continuous derivatives
at nodes, which can lead to artificial source and sinks for mass and momentum in
very uneven parts of the bedrock. Gillet-Chaulet et al. (2012) have shown that using
the average of the normal to the elements sharing the node to estimate the nodal
normal can lead to an artificial mass loss of up to 10 % of total ice discharge at the15

margin of Greenland. Recently, the mass conserving way of deducing the nodal surface
(Walkley et al., 2004), has been implemented in Elmer. For a node xj , with an element-
correlation number, Nj , the surface normal is derived by

nj =
1/Nj

∑Nj

i=1

∫
Ωk

n(xj )ϕkdV

‖1/Nj
∑Nj

i=1

∫
Ωk

n(xj )ϕkdV ‖
. (60)

The relation above constructs the nodal surface normal, nj , as a sum of the normals20

evaluated at the adjacent elements, Ωk , using the same weighting functions, ϕk , as for
the momentum equation.
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6.5 Accounting for inequality

As presented in Sect. 2, the ice temperature T in Eq. (14) is bounded by the pressure
melting point Tm and the free surface zb and zs in Eqs. (10) and (11) must fulfil the
inequalities zs(x,y ,t) ≥ b(x,y)+hmin and zb(x,y ,t) ≥ b(x,y). The variational inequality
is solved using a method of imposed Dirichlet condition that are released by a criterion5

based on the residual. Let

A ·h = a , (61)

be the matrix equation of the unconstrained system. In FE method terminology, A is
the system matrix, h the solution vector and a the body force. We then have to solve
Eq. (61) under a constraint vector hmin. Here, we choose a minimum value, hence10

a lower constraint, but the same method works also with upper bounds, like it is applied
in the case for constraining the temperature with the local pressure melting point. This
lower constraint reads

h > hmin . (62)

In order to introduce Eq. (62) we apply the same method as in Zwinger et al. (2007):15

– a node i violation hi > hmin i is set as “active”

– for each “active” node a Dirichlet condition hi = hmin i is introduced into Eq. (61).
This is achieved by setting the i -th row of the system matrix to Ai j = δi j , where δi j
is the Kronecker symbol, and the i -th entry of the force vector to ai = hmin i . Doing
so for all active nodes results in an altered, constrained system20

A′ ·h′ = a′. (63)

– Instead of Eq. (61) we are now solving Eq. (63), obtaining a solution vector h′.
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– h
′ in turn is inserted into the unconstrained system Eq. (61), defining the residual

R = A ·h′ −a . (64)

– If an earlier “active” node is found to comply with Eq. (62), it is taken of the list if,
and only if Ri < 0.5

This algorithm is repeated as long as there is no change in the active node set and the
convergence criteria imposed for the solver are met.

In a converged state, the physical meaning of the residual can be interpreted. For
the heat equation Eq. (14), the residual represents the additional cooling needed to
comply with the inequality T < Tm. For the free surface equations Eqs. (10) and (11), the10

residual can be interpreted as the per-node additionally needed accumulation/ablation
to meet the constraint Eq. (12).

7 Elmer/Ice efficiency

7.1 Convergence tests

Convergence of the Stokes solver is tested by running the same problem with an15

increased mesh resolution. The purpose of this exercise is to verify the model and
compare the efficiency of the various elements and associated stabilisation methods
available within Elmer. For three-dimensional geometries, the Stokes equation can be
solved using 8-node (linear) or 20-node (quadratic) hexahedron elements, or 6-node
(linear) wedge elements. Stabilisation of the Stokes equations is done either using the20

stabilised method (Franca and Frey, 1992) or the residual free bubbles method (Baioc-
chi et al., 1993).

The Stokes solver is verified using the manufactured analytical solution first proposed
in Sargent and Fastook (2010) and subsequently modified and corrected in Leng et al.
(2013). Here, we use exactly the same geometry and set of parameters as in Leng et al.25
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(2013). All meshes are structured and defined by the number of elements in x, y and z
directions. The mesh discretisation is made to vary from a very coarse mesh (20×20×5,
10 584 degrees of freedom for the linear element) up to a fine mesh (160×160×40,
4 251 044 degrees of freedom). The convergence rate for the various elements and
stabilisation methods is obtained as the slope of the L2 relative error norm function of5

the grid size refinement. The L2 relative error norm between two vectors u and v is
defined as:

δu,v =
2|u− v |
|u+ v |

. (65)

For simplicity, it is plotted here as a function of the cubic root of the inverse of the
degrees of freedom, which is proportional to the grid size refinement. These curves10

for the three components of the velocity and isotropic pressure are plotted in Fig. 1.
They show that whatever the element type and stabilisation method, the rates of con-
vergence (slopes of the curves) are similar and close to 3 for velocity and pressure.
A rate of convergence of 3 is greater than the theoretical value expected (e.g. Ern
and Guermond, 2004), especially for the linear element and pressure. Surprisingly, the15

same rate of convergence is obtained for linear and quadratic elements, and for a given
discretisation the quality of the solution is even better using linear elements, so that the
use of quadratic elements is not recommendable, at least in this particular example.
For this application and the quadratic 20-node hexahedron element, the residual free
bubbles method is found to be less accurate than the stabilisation method of Franca20

and Frey (1992).

7.2 Picard versus Newton linearisation

Picard and Newton schemes for the non linear solution of the Stokes equations are
compared by performing the ISMIP HOM experiment A005 (Pattyn et al., 2008; Gagliar-
dini and Zwinger, 2008) for two different initial conditions. The first one assumes null25
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velocity and pressure whereas the second initial condition is equal to the SIA solu-
tion for this problem. The switch from the Picard to the Newton iterative scheme is
controlled by a criterion on δup,up+1

, the L2 relative error norm, Eq. (65), between the
previous p and current p+1 velocity fields of the non-linear iteration loop. The same
diagnostic simulation is repeated for switch criteria of 10−6 (Picard only), 10−2, 10−1, 15

and 2 (Newton only). The non-linearity is assumed to be resolved when δup,up+1
< 10−6.

The evolution of δup,up+1
as a function of the non-linear iteration indice is presented in

Fig 2. As expected, the Newton scheme is quadratically convergent while Picard con-
verges only linearly (Paniconi and Putti, 1994). When the initial condition is null velocity
and pressure, it takes 40 Picard iterations to converge, whereas with Newton’s method10

alone, it requires only 10 iterations. Surprisingly, even if it takes less Picard iterations
to converge for the SIA initial condition, the convergence of the Newton solver is only
obtained if Picard iterations are performed from δup,up+1

< 10−1. This example shows
that Newton’s method can diverge if the initial condition is too far from the converged
solution. A switch criterion δup,up+1

< 10−2 is found to work in most cases and it re-15

duces the non-linear iterations by a factor about 2. Because the CPU consumption is
almost proportional to the number of non-linear iterations performed within one time
step, switching from Picard to Newton iterative schemes can reduce CPU time by the
same factor.

7.3 Elmer/Ice scalability20

The scalability of the new block preconditioned solver is tested and compared with
the parallel sparse direct solver MUMPS (Amestoy et al., 1998). For this purpose, the
diagnostic Stokes solution is computed using the present-day Greenland geometry.
The Greenland footprint is first meshed using regular triangle elements and then verti-
cally extruded. Different meshes are constructed by varying the horizontal element size25

from 5 km to 10 km, but all have 20 vertical layers. The size of the tested meshes varies
from 708 000 up to 4 580 000 nodes. Temperature and basal drag are imposed using
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the same fields as in Gillet-Chaulet et al. (2012). Newton iterations are used after the
convergence criterion reaches 5×10−2.

The results obtained for strong scalability, i.e. a constant problem size with different
partitionings, and for weak scalability, i.e. a constant load per CPU using different mesh
sizes, are presented in Figs. 3 and 4, respectively. The weak scalability experiment5

uses a constant number of 4200 nodes per partition in combination with an increasing
number of partitions from 168 up to 1092. Weak scalability is found to be larger greater
60 % even for the largest test case. Efficiency greater than 100 % is obtained with
the new block preconditioned method for the strong scalability, whereas for a number
of partitions greater than 100, MUMPS was always found to scale badly. This new10

solution strategy clearly opens the door to applications one order of magnitude greater
than what we were able to achieve so far using a direct solver.

7.4 Inverse methods validation

We test the two inverse methods previously presented in a 2-D example resembling
a calving glacier. As our objective is to validate the numerical implementation, we use15

a linear rheology for which the two inverse methods implemented are exact.
Our domain is 20 km long, the bed elevation is constant and equal to −900 m. The

free-surface elevation decreases linearly from 200 m at x = 0 km to 100 m at x = 20 km.
The free-surface is stress-free, we prescribe an homogeneous Dirichlet condition of
50 ma−1 for the horizontal velocity at x = 0 km, we apply a Neumann condition (hydro-20

static sea pressure) at x = 20 km, and we apply a linear sliding law and a non penetra-
tion condition at the bedrock.

We generate a reference solution with

β = 10−3 (1.0+ sin(2πx×2/L)
)

MPam−1 a, (66)

η = 10
(
1.5+ sin(2πx×6/L)

)
MPaa. (67)25

The surface velocities computed from this reference solution are then used as perfect
synthetic observations (twin experiments).
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The first step in the validation process is to assess the ability of each solver inde-
pendently to reconstruct the synthetic observations. For the sliding coefficient β, we
start from the initial guess βi = 10−3. The viscosity η is expressed as η = Eηη0, and the
optimisation is done on the viscosity enhancement factor Eη with initial guesses Eη = 1
and η0 = 15. It is possible a priori that several distributions of Eη, especially in the verti-5

cal direction, can lead to the same surface velocities, therefore, we made it possible in
the model to invert Eη only in the horizontal plane (x,y) when using vertically extruded
meshes. The gradient of J with respect to Eη at a given position (x,y) is obtained as
the vertical sum of the nodal gradients at position (x,y).

To ensure that β and Eη remain positive during the optimisation, β is expressed as10

β = 10α1 and Eη is expressed as Eη = α2
2 . The optimisation is then done with respect

to the αi (i = 1,2). The evolution of the cost function and norm of the gradient obtained
for each test is given in Fig. 5. Both the cost function and the gradient norm decrease
and tend toward zero with the number of iterations.

The second step in the validation process is to verify the following approximation:15

J(αi +hα′
i )− J(αi )

h
= ∇Jαi

+o(1). (68)

For a given perturbation α′
i , the left hand side term is evaluated by computing J(αi +

hα′
i ) with the direct model for several values of h, and the right hand side term is

computed directly from the nodal gradients. This test is done for the initial conditions
of the previous twin experiments. We also test the implementation of the Tikhonov20

regularisation, Eq. (44), by choosing the cost function such as J =
∫
Γb

0.5(∂αi/∂x)2dΓ

where αi = 1.0−9(1.0+ sin(2.0π×4x/L)).
For each solver, we use 10 random perturbations fields α′

i where each nodal value of
α′
i is a random number between −50 % and 50 % of the mean value of αi . The gradient

computed from the two inverse methods is verified using the ratio ∆(h) defined as25
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∆(h) =

∣∣∣∣∣ (J(αi +hα′
i )− J(αi ))/h−∇Jαi

∇Jαi

∣∣∣∣∣ . (69)

An example of the evolution of ∆(h) as a function of h is shown in Fig. 6 for the
perturbation of the enhancement factor to the viscosity Eη(x,y). For both inverse meth-
ods and all experiments, i.e. perturbation of β (not shown), Eη(x,y ,z) (not shown),
Eη(x,y) (Fig. 6) and the Tikhonov regularisation (not shown), the ratio ∆(h) is found to5

decrease as h decreases and it reaches a value typically lower than 10 %. Such values
are already satisfactory, nonetheless we could obtain even more accurate gradients by
automatically deriving the code itself.

8 Outlook

A number of the requisites for an ice-sheet model as discussed in the Introduction10

have already been implemented in Elmer/Ice, and especially those necessary to accu-
rately describe the flow of polar ice. Nevertheless, as for other ice-sheet models, the
physical processes at the boundaries and their coupling with the other components of
the climate system can still be improved on in the near future. This is the prerequisite
for running any forecast simulations of ice-sheets, and not only sensitivity experiments15

based on more or less crude parameterisations that link changes in the atmosphere
and the ocean to changes at the boundaries of the ice-sheet. Our efforts in the near
future will be dedicated to improving the physical description of the ice/atmosphere,
ice/ocean and ice/bedrock boundaries, as well as the models describing how the per-
tinent variables at these interfaces are distributed20

For the basal boundary condition, numerical modelling (Schoof, 2010) or direct mea-
surements (Sole et al., 2011) seem to indicate a very complex relation, most certainly
non-linear, between changes in surface runoff and modulation of basal sliding. Two in-
gredients would then be required to fully account for the complexity of basal processes
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in relation with changes in surface runoff: (i) a proper basal friction law depending on
the effective basal pressure (i.e. Eq. 22), and (ii) an associated hydrological model
to describe the basal water pressure distribution. This hydrological model is currently
under development and will be presented in de Fleurian et al. (2013).

Changes in the front position of marine terminated glaciers seem to have a great5

influence on the upstream ice flow by modulating the buttressing force (Vieli and Nick,
2011). Determining the rate at which icebergs are calved for many different configura-
tions remains an open question in glaciology. Submarine melting acting at the calving
front of glaciers certainly increases calving rate by undercutting the ice (Rignot et al.,
2010; O’Leary and Christoffersen, 2012). A general calving law, especially for 3-D con-10

figurations, still needs to be formulated (Benn et al., 2007). Better knowledge of the
stress distribution at the front of glaciers and of the submarine melting distribution, as
well as a reliable ice damage model (e.g. Pralong, 2005; Jouvet et al., 2011), are the
required ingredients to describe calving at the front of marine terminated glaciers. In
Elmer/Ice, the already implemented ALE formulation for the free surface accounts for15

moving ice-sheet margin boundaries. Because Elmer/Ice solves the full-Stokes system,
all components of the stress filed are known and can therefore be used to evaluate ice
damage. Work is in progress to implement an ice damage rheological law following
Pralong (2005) with the aim of using damage iso-surface to locate the calving surface
and move accordingly the front surface.20

Melting from beneath the ice-shelves is certainly one the most important triggers
of the observed recent ice-stream accelerations (e.g. Payne et al., 2004; Dupont and
Alley, 2005). Not only is the total amount of basal melting important, but also its spatial
distribution (Gagliardini et al., 2010). For numerical and technical reasons, coupling
an ocean model with an ice-sheet model is still a challenging issue. An intermediate25

approach we would like to explore as a preliminary step towards a complete coupling
with an ocean model is the implementation within Elmer/Ice of a plume type model
(Holland and Feltham, 2006).
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9 Conclusions

We have presented in detail the Elmer/Ice ice sheet flow model, from the equations im-
plemented to the way they are solved using the FE method. Elmer/Ice contains a high
mechanical description of ice flow: it solves the complete Stokes equations without any
approximation, includes two complex anisotropic flow laws, resolves the grounding line5

dynamics as a contact problem and incorporates a basal friction law accounting for cav-
itation. Temperature and fabric fields within the ice-sheet domain can be determined in
a coupled manner with the flow solution. Other equations allowing to derive secondary
variables from the Stokes solution, such as the age of the ice, the stress or strain-rate
fields, are also implemented. Two recent inverse methods have been implemented in10

Elmer/Ice that make it possible to infer the poorly known parameters to construct the
initial state of the ice-sheet. From a technical point of view, Elmer/Ice reaps the benefits
of the FE method, and provides an easy mesh adaptation method to focus on areas of
interest. Elmer/Ice is a highly parallelised code and as a recent important improvement,
the new block preconditioned solver will in the near future lead to increase significantly15

the size of the solved problems. As listed in the previous section, there is still a need
for future improvements and new developments, particularly by linking more tightly the
pertinent variables controlling the flow at the boundaries, like the basal water pres-
sure, with the other components of the climatic system. This next step is the requisite
for driving ice-sheet forecast simulations and furnishing reliable estimates of ice-sheet20

induced sea-level rise for the coming centuries.
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Fig. 1. Results of the convergence tests: L2 relative error norm between Elmer/Ice and analyt-
ical solutions for the 3 components of the velocity (u,v ,w) and the pressure, p, as a function
of the grid size (which is proportional to the inverse of the cubic root of the degrees of free-
dom) for Franca and Frey (1992) stabilisation with (black) 6-node wedge element, (red) 8-node
hexahedron element and with (blue) 20-node hexahedron element; and for the residual free
bubbles stabilisation (Baiocchi et al., 1993) with (green) 8-node hexahedron element and with
(magenta) 20-node hexahedron element. The black dashed line indicates a rate of convergence
of 3.
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Fig. 2. Evolution of the L2 relative error norm between two consecutive solutions of the Stokes
system, δup,up+1

, as a function of the non-linear iteration, for a switch criterion from the Picard

to the Newton scheme of 10−6 (Picard only, black curve), red 10−2, green 10−1, blue 1 and
magenta 2 (Newton only), for the ISMIP HOM experiment A005 with initial conditions (circle)
assuming zero velocity and pressure and (triangle) estimated from the SIA solution. The colour
of the dot-dashed lines indicates the value of the switch criterion of the corresponding colour
curve.
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Fig. 3. Acceleration (Up) and efficiency (Bottom) for strong scalability experiments using the
block preconditioner for meshes with (red •) 2.400×106 nodes, (red �) 1.142×106 nodes and
(red N) 0.708×106 nodes, and the MUMPS solver for meshes with (blue �) 1.142×106 nodes
and (blue N) 0.708×106 nodes. The dashed line indicates a theoretical efficiency of 100%.
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Fig. 4. Efficiency for a weak scalability experiment using the block preconditioner for an ap-
proximate number of nodes in all meshes of 4200 and meshes from 0.708×106 nodes up to
4.58×106 nodes.
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Fig. 5. Evolution as a function of the number of iterations of (top) the cost function relative to
the initial cost function and (bottom) the norm of the gradient vector relative to the initial gradient
norm for the Robin (black curves) and Control (red curves) inverse methods for the inversion of
β (solid curve), Eη(x,y) (dashed curve) and Eη(x,y ,z) (dotted curve).
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Fig. 6. Ratio ∆(h) obtained with the Robin (black curves) and Control (red curves) inverse
methods for perturbations of the enhancement factor to the viscosity Eη(x,y).
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